物理化学実験吸収スペクトル(その2)

1 目的

果物やお茶など、植物に由来する色素分子は、共役二重結合を持っており、これが発色の原因となる。たとえば、カロチノイドには、…… = CH - C = CH という結合を含んでいる。共役二重結合の両端部分の構造によって、吸収帯の位置や形が変わるので、黄色や赤色を出すことになる。フラボノイドも共役二重結合を持つが、ベンゼン環の形で持っている。

お茶に含まれる色素の主な成分はフラバノールで、これはフラボンの一種である。一般にフラボン類は酸性にすると黄色が薄くなり、アルカリ性にすると濃くなる。このことを実験によって確かめ、この現象が起きるメカニズムについて考察する。

2 実験

2.1 分光光度計

島津 SPECTRONIC 20A を使用する。使用法は既に配布した資料の通り。

2.2 試料

以下の表を参考にして、pH3、pH7、pH12の緩衝液を調整する。

表10.49 広域緩衝液¹(低精度)^{†2}
0.2M ホウ酸、0.05M クエン酸を含む液 xm/に、0.1M Na₃PO₄・
12H₂O の (200-x) m/を加える。

pН	х	pН	x	pН	х
2.0	195	5.5	126	9.0	69
2.5	184	6.0	118	9.5	60
3.0	176	6.5	109	10.0	54
3.5	166	7.0	99	10.5	49
4.0	155	7.5	92	11.0	44
4.5	144	8.0	85	11.5	33
5.0	134	8.5	78	12.0	17

^{†1} Carmody (1961),

図 1: 『緩衝液の選択と応用』(講談社サイエンティフィク) より

調整した緩衝液の pH を測定して確認する。

ペットボトル入りのお茶を用意する。試料測定用の試験管に、何もせずお茶を入れたも

た この液は作りやすいが、市販のリン酸三ナトリウムの組成が 一定しないため、だいたいの。pHを示すにすぎない。この表は 市販の、約2%の NaOH を含むものを用いた場合である。

の、及びそれぞれの緩衝液で2倍に希釈したもの、純水で2倍に希釈したものを入れる。 このとき、見た目の色がそれぞれどうであるか確認すること。

吸光度を、330 nm から 650 nm の範囲で 10 nm おきに測定する。吸光度は、透過率 T%の値で各波長ごとに読み取り、計算によって吸光度を求める。

それぞれの試料のpHを測定して記録する。

3 課題

- 1. 観測されたデータについて、透過率のグラフと吸光度のグラフを作成しなさい。それぞれのグラフについて、5種類の試料を重ねて表示しなさい。(エクセルを使ってもかまわないが、自然科学系のグラフの「お作法」が守られていないと減点することがある)
- 2. 実験レポートには、読み取った透過率の値と計算で求めた吸光度の値を記載しなさい。
- 3. 共役二重結合による発色のメカニズムについて調べ、本実験との関連を議論しなさい。

4 余談

お茶の色素の発色がpHによって変わるという現象は、世の中では広くインチキ宣伝のネタとして使われている。電解還元水という、水を電気分解してアルカリ性の水を作る装置があり、数十万円のぼったくり価格で売られている。この宣伝において「還元水を使ってお茶を薄めると色が濃くなった」というデモが行われ、還元水が「健康にいい」だの「水を活性化する」だのといった効果があることの根拠にされている。お茶の色がpHで変わることが広く知られていないようで、騙される人が後を絶たない。本学科の卒業生には、この手のインチキを見抜いていただきたいものである。